Tutorial

Control the player and
environment in Minecraft

Continuing our series on Python coding in Minecraft, this issue were
looking at controlling the player character and the world around them

Calvin
Robinson

is head of computing

al

and network
manager atan

[l-through state

school. Specialising
in computer science,
Calvin also works

with schools
all over London
as acomputing
consultantin

education, helping
provide high-quality
computing teaching

72

and learning.

Y 0 6 a4

ne raft()
playerpos = mc.player.getPos()
blockID=

while :
x=playerPos.x
y=playerpos.y

05 .
Block(x,y,z,blockID)

nc
time.sleep(

R T R A T R R s
What you'll need

M Minecraft
https://www.mojang.com/games

M Python
https:/www.python.org

M McPiFoMo
http://rogerthat.co.uk/McPiFoMo.rar

M Minecraft Turtle
http:/bit.ly/MinecraftTurtle

M Block IDs
http://bit.ly/minecraft_id_links

R R R S P SR S N e B AR SR

Hooking directly into Minecraft with Python gives us
many advantages, but rather than building by hand,

we can use programming techniques such as loops to
simplify much of the building process. In this issue’s
tutorial, we will manipulate the player character’s position
and the blocks around them. We use simple lines of code to
replicate blocks in rows and columns, to build entire rooms
out of thin air. We also teleport Steve or Alex around your
world at the drop of a hat. Combining these two functions
enables us to have a little fun with TNT to create our own
bomber-man.

As a prerequisite, we assume you've installed
McPiFoMo, from our last two issues. McPiFoMo includes
MCPIiPy by ‘fleap’ and ‘bluepillRabbit’ of MCPiPy.
com; the Raspberry Jam Mod, developed by Alexander
Pruss: and Minecraft Turtle by Martin O’Hanlon of
www.stuffaboutcode.com.

1 Moving the player character
We can directly control our character’s position
using x,y,z coordinates. Create a new Python script and

import mc.

I from mcpi import minecraft
I mc = minecraft.Minecraft.create()

l mc.player.setTilePos(20, 20, 20)

Of course, we can replace these values with variables, to
make things easier later on:

B =20
B y=20
B =2
l mc.player.setTilePos(x, Yy, 2)

Now whenever we want to change the player’s position, we
simply alter the x,y,z variables.

Placing blocks
As well as moving the player character, we need
the ability to place and move blocks around our world.

To do this, we use the setBlock command:
B mc.setBlock(30,30,30,57)

Again, variables make life easier, so in practice we'd
probably arrange it like this:

x=30

y=30

z=30

blockID=57

mc.setBlock(x, vy, z,blockID)

The blockID for diamond is 57 - you can find morevusing
the link in the What you'll need box (p72).

O Combining the two

If we assign the player position to a variable, we
can use it as coordinates for placing blocks, so that we can
create something around our player.

playerPos = mc.player.getPos()
x=playerPos.x

y=playerPos.y

z=playerPos.z
mc.setBlock(x,y,z,blockID)

This will place a block exactly where our player is. You can
then offset the coordinates accordingly: x+=1. Remember:
x is East/West, z is North/South and y is Up/Down.

O User input to define variables
With the addition of a typical input command, we
can ask the user what type of block they'd like to create.

I blockID = input("Which blockID would you like
to use? ")

Taking that a step further, let’s ask the user where they’d
like the block(s) placed:

|
B
|
I y=playerPos.y
|
|
|

| Minecraft

I relativeX = input("How many blocks East of your
position would you like this block placed? ")
I mc.setBlock(relativeX,y,z,blockID)

You can of course do the same for the y and z coordinates.

0 Build in rows and columns

Placing blocks one at a time can slow down the
process. There may be instances where we want to place
entire rows and columns of blocks at once. After setting
your playerPos and blockID (as in Step 3 and Step 4), we
need to add variables for rows and columns.

I eastWest = 20

B northsouth = 30

I upDown = 40

I mc.setBlocks(x,y,z, xt+eastWest, y+northSouth,
z+upDown, blockID)

I mc.setBlocks(x+1,y+1,z+1, x+eastWest -1,
y+northSouth -1, z+upDown -1, 0)

0 Explosion man

Now that we're familiar with playerPos and
setBlock, we can combine the two to turn your player into

a walking bomber-man. By moving our earlier code into a
while loop, and with the addition of a simple Boolean, we
can make our player drop bombs with every step:

while True:
playerPos = mc.player.getPos()
x=playerPos.x

z=playerPos.z
mc.setBlock(x,y,z,46)
time.sleep(0.1)

Now it's time to have some explosive fun! Bl

B Take your time

Whether you're placing blocks or moving your player
character around the world, you may want to space out
your commands. Using Python’s time.sleep command,
we can create an artificial gap in our code.
Forinstance, time.sleep(10) would pause the

program for ten seconds before initiating the next line
of code. This could be useful if you wanted a certain
block to appear every x number of seconds, or if you
fancy moving a player around at specific intervals.

In order to use time.sleep, you will need to
import time atthe top of your code.

www.linuxuser.co.uk

73




