Calvin
Robinson
is head of
computing and
network manager
at an all-through
state school.
Specialising

in computer
science, Calvin
also consults
with schools all
over London.

Resources

M Minecraft
www.mojang.com/
games

M Python
www.python.org

B McPiFoMo
http:/rogerthat.
co.uk/McPiFoMo.rar

M Block IDs:
http:/bit.ly/
MinecraftIDList

Minecraft

Create 3D art piecesin
Minecraft using Python loops

Taking our Minecraft pixel art into the third dimension,
this time we'll build pyramids with Python loops

Last issue, we started our series on Minecraft pixel
art, by coding some 2D art blocks. This time we’re
taking a different approach to our art, by implementing
an additional axis and therefore bringing it into the
third dimension. Well, technically, everything is 3D in
Minecraft, but last issue we built some rather convincing
‘flat’ pixel art. Now we're taking it to the next level.

We're going to build a pyramid using while and for
loops in Python. This will save us typing lots of similar
lines of code. Spawning our coded creations is so much
faster than placing each individual block manually in
Minecraft’s Creative mode.

If you're using Minecraft Pi edition on a Raspberry
Pi, no additional software is necessary. We've also put
together a number of tools to ensure this hack works on
Linux, with a retail version of Minecraft. Therefore as a
prerequisite, we assume you've installed McPiFoMo from
our previous three issues. McPiFoMo includes MCPiPy by
‘fleap’ and ‘bluepillRabbit’ of MCPiPy.com; and Raspberry
Jam, developed by Alexander Pruss.

All Python scripts should be saved in the directory

~/home/.minecraft/mcpipy/, regardless of whether
you're running Minecraft Pi edition or retail Linux
Minecraft. Be sure to run Minecraft with the Forge 1.8
profile that’s included in our McPiFoMo package.
0 Starter code and variables

Here’s the first block of code to start with.
l from mcpi import minecraft
I mc = minecraft.Minecraft.create()
I pos = mc.player.getTilePos()
I X = pos.x + 2
By = posy
i:

= pos.z

height = 29
count = 0
blockID = 24
blockType = 1

0 Starter pyramid

First, we're going to initiate a bunch of variables,
collecting the player’s standing position with pos =
mc.player.getTilePos(), and breaking that down into x,
y, z coordinates with x = pos.x + 2, y = pos.y and
z = pos.z. We've also got variables for the height of our
pyramid; we'll get to shortly. Below that we have blockID
and blockType, which will affect the blocks used to
create our pyramid. Block ID 24:1 would be broken down
to blocklID 24, blockType 1. We felt Chiseled Sandstone
looked quite ‘pyramid-y’ to begin with.

0 Adding the loops
Let’s create some for loops nested within a
while loop.

I while height - (2 * count) > 0:
I for block in range(height - (2 * count)):
I for row in range(height - (2 * count)):
7 blockX = x + block + count
] blockY =y + count
l blockZ = z + row + count
I mc.setBlock(blockX, blockY, blockZ,
blockID, blockType)

count += 1

0 Customising our pyramid

We've already initialised variables for height and
count. By changing the height, we can make our pyramid
larger or smaller. The count variable is used in the loop,
to make sure our pyramid stops on the number of rows
we specified in height. We start at O and increment
upwards with each cycle of the loop.

If we wrap our setBlock command in conditional (if ...
else) statements, we can alternate rows, using the count
variable to see if the row is an even number or an odd. We
can place a different blockID on each row.

0 Wrap with conditional statements

Replace the current mc.setBlock(blockX,
blockY, blockZ, blockID, blockType) line with the
following code:

I if count % 2 ==

mc.setBlock(blockX, blockY, blockz,
woolBlockBlack, woolBlockBlackType)
B else:

mc.setBlock(blockX, blockY, blockZ,
woolBlockGreen, woolBlockGreenType)

It just so happens we're using different coloured wool
blocks. You might want to name your variables differently.

0 Alternating colours on our pyramid

Rather than setting the colour based on odds/
evens, we can get more creative and make each row a
different colour. Alter the if statement to include elifs
for each row that you'd like to colour, but don’t forget to
initialise blockID/blockType variables:

B woolBlock = 35
I woolBlockWhiteType
I woolBlockGreenType

non
[

0 Coding multicoloured lines
Now let’s build layers upon layers.

I if count ==

l mc.setBlock(blockX, blockY, blockz,
woolBlock, woolBlockBlackType)

B clif count ==

I mc.setBlock(blockX, blockY, blockz,
woolBlock, woolBlockYellowType)

B elif count ==

B mc.setBlock(blockX, blockY, blockz,
woolBlock, woolBlockBlueType)

B clif count ==

I mc.setBlock(blockX, blockY, blockz,
woolBlock, woolBlockGreenType)

I else:

B nc.setBlock(blockX, blockY, blockz,
woolBlock, woolBlockWhiteType)

0 Variables for the above code
Having a fancy if statement is great, but don't
forget the variables:

B woolBlock = 35

I woolBlockGreenType
I woolBlockBlackType =
i
[
L

5

15
woolBlockYellowType = 4
woolBlockBlueType = 3
woolBlockWhiteType = 0

0 Egyptian influence
We should now be in a position to alter the height

of our pyramids and the types of block used for each row,
or to alternate the colour of rows depending on what suits
our needs. Now is the time to get really creative and put
that together to produce something original.

We'd love to see what you come up with, so please
do tweet us a screenshot of your pyramids and
accompanying Python code to @linuxusermag.

You could also try reversing the for loops, to create an
inverted pyramid.

M Creative coding

Minecraft provides a space for gamers to be creative.
Using the tools provided in this series of tutorials,
we can hook directly into Minecraft with Python
scripts, allowing us even more control over our virtual
environment. Instead of individually placing blocks
around our world, we can write a simple Python script
to spawn them. This also means we can do far more
complex calculations than we'd ever be able to do in
our heads, to spawn creations that boggle the mind.
With each issue of LU&D we take a deeper look into
coding Python for Minecraft, with the aims of both
improving our Python programming skills and also
gaining a better understanding of what goes on under
the hood of everyone’s favourite voxel game.

www.linuxuser.co.uk

73




