Robinson

Calvinis an
Associate
Assistant
Principal, Teaching
& Learning, New
Technologies at
athree-campus
all-through school
in North West
London.

Resources

H Raspberry Pi

M Sense HAT
www.raspberrypi.
org/products/
sense-hat

HPython 3

M Sense HAT

for Python 3
https:/pypi.org/
project/sense-hat

Tutorial files
available:

filesilo.co.uk

Sense HAT: Menu System

Sense HAT: Create a
physical menu system

Take your Python code to the next level with some
physical computing and the Raspberry Pi Sense HAT

a0 -
B

The Sense HAT is an official add-on board for the
Raspberry Pi, offering a whole host of built-in

sensors including a gyroscope, accelerometer and
magnetometer, plus temperature, barometric pressure
and humidity sensors. What we're most interested in,
though, is the fancy 8x8 RGB LED matrix and five-button
joystick on top. Using an array of 8x8 images we're going
to create a menu system that is operable with the five-
button joystick and select button.

We'll start off with a simple four-option menu system
where up, down, left and right analogue positions enable
the user to choose from four different menu screens
made up of 8x8 pixel art. Pushing in the analogue stick
button will select the desired option. We'll then take a
look at building on this to create potentially unlimited
menu options.

This menu system can then interface with any Python
program you're creating, providing a physical user
interface which we think you'll agree proves to be a much
more appealing user experience than entering a number
in a regular Python shell window command prompt.

Install the HAT

01 When attaching the HAT to your Pi be sure to
screw the standoffs in place before plugging the HAT
onto the Raspberry Pi's GPIO pins; this will avoid it
bending on one side and potentially breaking the pins. If
for some reason you need to remove the Sense HAT at
some point, be very careful as the pin header tends to
come off with it. Once attached, we'll need to install the
sense-hat Python module with:

I sudo apt-get install sense-hat

*menu-companion .py»'ion.py(a.s,a)' =B
File Edit Format Run Options Window Help
from time imf leep
from sense_hat import
#import testy

PSenseHat, ACTION_PRESSED, ACTION_HELD, ACTION_RELEASED

print(""Menu System Loaded*")

sense = SenseHat ()
#sense. show_message("Hello World!")

r=(255,0,0)
g=(0, 255,0)
b=(0,0,255)
w=(256, 255, 255)
br=(165, 42, 42)
0=(0,0,0)

0 Set up modules

We may want to use the sleep command for
added effect when loading pixels onto the LED matrix, so
we'll need to import the time module. We're also going to
use a bunch of functions from the sense-hat module that
we installed previously. These are mostly for recognising
button-presses on the analogue stick:

I from time import sleep
B from sense_hat import SenseHat, ACTION_
PRESSED, ACTION_HELD, ACTION_RELEASED

This enables us to monitor whether a button is pressed
(down), held or released.

O Set up the variables

We'll need a new instance of SenseHat, which
we'll call sense for simplicity. We'll also need to set up
variables for each colour of pixel we want to draw on the
LED matrix; we've gone with red, green and blue here, but
you can use any RGB colour values:

[l sense = SenseHat()
B r=(255,0,0)
B 2=(0,255,0)
B b=(0,0,255)

04 Menu images - pixel art

Creating images for your menu system based on
pixel art can be a challenge in itself. Try looking up some
ASCll art for inspiration. Being limited to an 8x8 grid can

be a blessing and curse. You'll need a different ‘frame’ for
each menu option, four to begin with.

B frame1 = [g,g,8.8.8,8,88,8b,b,g,8b,b,2,8,b,b,¢,
g,b,b,g,8,8,8,b,b,8,¢,¢,2,8,8,b,b,8,8,8,8,b,b,b,b,b,b,g
,8,b,b,b,b,b,b,g,8,8,8,8,¢,¢,¢,8,]

framel = [
9.9.9,9.9.9.9. 9,
g,b,b,g,9.b,b,g,
g.b,b,g,9,b,b,g,
9.9.9.b,b, 9.9.9.
9.9.9.b.b,g9,9.9,
g,b,b,b,b,b,b,g,
'9,b,b,b,b,b,b,g,
'9.9.9.9.,9.9.9.9,
1

frame2 = [
'9.,9:,9.9.9.9.9.9,
Qewi v, 9,9, W g,
g,wW,wW,Q,Q9,w,w,d,
9.9,9,w,w,9.9,9,
9.9,9.wW,w,9.9,9,
Qe W, W, W, W, W, T,
Qo i, W W W, g,
9.9.9.9.9.9.9,9,
1

‘diamond = [

W, v, v, b, v v, 0,
vi,w,b,b,b,v,w,o0,
w,b,b,b,b,b,w, o0,
b,b,b,b,b,b,b,o,
w,b,b,b,b,b,w,0,

Be experimental with your frames. Rather than loading
the whole thing at once, the following tip will demonstrate
how to slowly load a frame line by line.

0

Animating a frame
Create a variable i=0 and add the following:

I for i in range(8):
sense.set_pixel(9,i,g)
sense.set_pixel(1,i,g)
sense.set_pixel(7,i,g)
sleep(0.2)

i=i+

Filling in the gaps above for rows 2-6 will fill the LED
matrix one row at a time, incrementally.

0

Showing off with animations
Another neat trick is the flashing frames. By
using the below technique and adding more frames
you can create a flick-book style animation that looks
quite impressive:

sense.clear()

1=0

#fill column one at a time

for

07

0

iinr

sense.
sense.
sense.
sense.
sense.
sense.
sense.
sense.
sleep(
i=i+l

ange(8):
set_pixel(®,i,g)
set_pixel(1,1i,qg)
set_pixel(2,i,g)
set_pixel(3,1i,g)
set_pixel(4,1i,qg)
set_pixel(5,1i,g)
set_pixel(6,1i,qg)
set_pixel(7,1i,g)
9.2)

sense.clear()
while True:
sense.set_pixels(framel)

sleep(0.5)

sense.set_pixels(frame2)

sleep(0.5)

Set up buttons
Our buttons will be set up in three sections of
code. We'll have a function for displaying the 8x8 pixel
image so that we can look at different menu options
before selecting one. We'll then have a separate function
for actioning a button press; when pushed/released we'll
call up a specific action depending on which image is
currently highlighted.
An easy way to experiment with this code without
connecting your Sense HAT to the Piis by running it on
a web emulator. Trinket.io has a fantasic emulator that
makes the trial and error process far quicker, because
you can run the code on your favourite Linux distro. See
https://trinket.io/sense-hat.

Create menu highlighting
When a menu function is called (upMenu,

www.linuxuser.co.uk

71



Tutorial

Displaying
alphanumeric
digits onthe
Sense HAT

e el ]

Todisplay a single-
character onthe LED
matrix use sense.
show_letter("C")
where Cis any
number or letter that
takes your fancy.
Thisis far simpler
than creating an

8x8 frame of pixels
per menu - ideal

for creating a quick
concept menu.

72

Sense Hat: Menu system

rightMenu, leftMenu or downMenu), we're accepting a
single parameter (event) which will let us know if the
button has been released. We're using ‘released’ rather
than ‘pressed’ simply because it feels more natural.

If the button (in this case, ‘up’) is released we're
printing a message to the console, mainly for debug
purposes so that we know the code is working, then we're
clearing the LED matrix and displaying a new pixel image
from framel. If the middle button is pressed we call our

File Edt Format Run Options Window Help

© downMenu(event):

sense.clear()

if event.action == ACTION_RELEASED:
sense.set
print(""Down option hig $.*")
#menu item 2
sense.stick.direction_middle = downCreate

=f downCreate(event):
7 event.action == ACTION_RELEASED:
print("*Down option selected."”
#Action code goes here

C rightMenu(event):

17 event.action == ACTION_RELEASED:
sense.clear()
sense.set_pixels(diamond)
print("*Right option highlighted.™")
sense.stick.direction_middle = rightCreate

ef rightCreate(event):

2f event.action == ACTION_RELEASED:
print("’Right option selected.*'

second function, upCreate; again, we'll have a create
functions for down, left and right as well.

0 Create menu highlighting — the code

We'll have four instances of the following code,
one for each menu option (up/down/left/right). Change
the function names accordingly and insert the correct
variable for the pixel art:

I def upMenu(event):

g if event.action == ACTION_RELEASED:
2 print("*Up option highlighted.x")
I sense.clear()

I sense.set_pixels(framel)

A sense.stick.direction_middle = upCreate
1 Menu selection code
Very similar to the previous function, we have

one parameter for a button release, we're printing to
console for debugging, and then there’s a space to
insert whatever actionable code you require. You could

essentially put a while Python statement after that
comment if you wanted to:

I def upCreate(event):

if event.action == ACTION_RELEASED:
| print("*Up option selected.x")
| #Action code goes here

1 Operating the buttons

Now that we've got our buttons set up to display
menus and action code, we'll need to provide Python
with a way of knowing if they've been pressed in the first
place. Using our sense object we can listen for events
stick_direction_up, stick_direction_down, stick_
direction_left and stick_direction_right:

B sense.stick.direction_up = upMenu

I sense.stick.direction_down = downMenu
I sense.stick.direction_right = rightMenu
I sense.stick.direction_left = leftMenu

1 Keeping it running
In order for the above to work and to keep our
programming running we'll use a loop:

B vwhile True:
pass

Or to be more efficient and save CPU resources use:

I while True:
I time.sleep(1)

menu-companion-advanced.py - /h..nu-companion-advanced py (35.3) - 0 x

Elle Edit Format Run Options Window Help

e optionMenu(event):

sense.clear()

if event.action == ACTION_RELEASED:
#sense.set_pixels(framel)
#menu item 1
sense.stick.direction_right = optionMenu2
sense.stick.direction_left = optionMenud

© optionMenu2(event):
17 event.action == ACTION_RELEASED:
sense.set_pixels(frame2)
#menu item 2
sense.stick.direction_right = optionMenu3
sense.stick.direction_left = optionMenu

optionMenu3(event):

it event.action == ACTION_RELEASED:
sense.set_pixels(frame2)
#menu item 2
sense.stick.direction_right = optionMenud
sense.stick.direction_left = optionMenu2

i=F optionMenud(event):
f event.action == ACTION_RELEASED:
sense.set_pixels(frame2)
#menu item
sense.stick.direction_right = optionMenu
sense.stick.direction_left = optionMenu3

aanmeiick: Crackion right = optiopkeny
1 Advanced menu system
To improve this system we may want to increase

the number of menu options available. Rather than
using up, down, left and right to highlight menu options
we could stick with left and right for back and forth by
introducing scrolling. With this method our options are
potentially unlimited.

We could do this by adding alternate functions to
the left and right directional menus, that is by adding
sense.stick.direction_right = optionMenu3 to our

rightMenu function. We could add as many optionMenu
functions as we need, progressing with the right stick
and not forgetting to add sense.stick.direction_left
optionMenu2 to give users an option to go back using the
left stick.

1 Call independent Python programs

We can implement any code into the actionable
functions and it’ll occur whenever we select that menu
option. However, you might instead want to launch a
completely independent Python program when certain
menu options are selected.

Python’s included os module takes care of this; if we
add import os to the top of our code we can call upon
independent Python programs in each menu option with
the following:

l os.system('testy.py")
where test.py is the name of the program.

1 Building from here

We have the option of tilting the Pi left and
right to change menu options using the Sense HAT'’s
accelerometer. The two axes we need to observe are
Pitch, which is left/right, and Roll which is up/down,
in-line with the analogue stick.

I while True:
acceleration = sense.get_accelerometer_
raw()

B Shake to clear
Introduce the Yaw axis to know when the Pi travels up
or down vertically by reading the z acceleration with
the sense.get_accelerometer_raw function. This
would be a nice way of introducing a ‘shake to clear’
function, which could reset the menu screen.
Introduce z = acceleration['z']to the while

loop in our penultimate tutorial step, and don’t forget
to round the values with z=round(z, 0).Then we
would need an if statement along the lines of if

z == 1: clearMenu, provided clearMenu was a
function set to clear the screen with sense.clear().
Then listen for further menu selections with either
the analogue stick or the Roll/Pitch axis.

] x = acceleration['x']
acceleration['y']

B
<
It

1 Shaking/rolling

We'll need to round off the accelerometer values
into floats to make them useable; x=round(x, ) and
y=round(y, ©) will do the trick. Wecan now use an if
statement for x or y being equal to 1 or -1 for left or right.

Birx =1
B elif x == 1

Implement a call to an optionMenu function in these if/
elif statements and we have a functioning tilt menu. M

www.linuxuser.co.uk

73



